DiffSynth

导言

DiffSynth-Studio 是由魔搭社区(ModelScope, 阿里2022年11月开源的模型社区)算法工程师段忠杰主导开发的开源扩散模型引擎,致力于构建统一的 Diffusion 模型生态。该项目支持多种主流文生图/文生视频模型(如 Stable Diffusion、可图、CogVideoX),并兼容 ControlNet、LoRA、IP-Adapter 等生态模型,显著提升中文场景下的生成能力。[^1]

Read more

VeOmni

导言

VeOmni 是字节跳动与火山引擎联合研发的 统一多模态训练框架,核心目标是解决多模态模型(如 DiT、LLM、VLM、视频生成模型)训练中的碎片化问题,实现 “统一多模态、统一并行策略、统一算力底座”。其经过千卡级真实训练任务验证,支持从百亿级语言模型到 720P 视频生成模型的全流程训练。[^1]

Read more

Pip Cache

导言

VeRL场景开发时,安装包特别多和复杂:

  1. CANN
  2. torch\torch_npu
  3. vllm\vllm_ascend
  4. MindSpeed\megatron
  5. transformer

开发时还要pip install -e . 还要修改代码。

传统的思路是docker镜像或者conda打大包,但是这种包一个就是20GB+,但是这是商发时的策略,开发时即使只是修改一行,但是还是要重新出一个20GB大包。

思路是借助并加速pip的原子化构建:

  • 在内网服务器上建立一个pip包缓存站,
  • 不仅能缓存官方包,
  • 自己修改的代码包也能提交。
  • 最终实现,除了CANN安装,其余pip包,一行pip intall -r requirements.txt就行。
Read more

Training Data Usage

导言

论文中提及的数据训练,分数上涨和饱和的描述总结

Read more

Omni-Modal: AR vs DiT

导言

全模态大模型(Omnimodal Large Models, OLMs),以下简称Omni模型,有时也称之为“端到端多模态大模型”。 它主要解决的文本、图片、语音多模态理解与实时交互的协同问题(图片修改),最新的研究也会涉及统一推理和图像生成。

当前多模态设计中AR和DiT的组合关系,单独学习一下

Read more

vllm-omni

导言

vllm专门为了多模态单独推出了推理框架vllm-omni,调研一下

Read more

RL Algorithms: PPO-RLHF & GRPO-family

导言

  • RLHF 利用复杂的反馈回路,结合人工评估和奖励模型来指导人工智能的学习过程。(RLHF = 人类偏好数据 + Reward Model + RL(如 PPO), 所以RLHF是RL的一种实践方式)
  • 尽管DPO相对于PPO-RHLF更直接,但是(Reinforcement Learning from Verifiable Rewards (RLVR))往往效果更好;
  • 而RLVR算法在 2025年的GRPO提出后,其变种和应用范围迎来了井喷爆发。
  • 本文详细介绍 PPO、GRPO以及DAPO。

[^1]

必看好文[^2]

Read more

Bridging the Gap: Challenges and Trends in Multimodal RL.

导言

快速调研多模态强化学习及其ai infra(verl类似)的下一步方向、技术点和与LLM RL的差异点:

  • 说实话有点头大
  • 多模态理解模型的主体就是LLM,LLM的RL基本半年后会迁移到多模态理解上,所以我要跟踪LLM RL的文章
  • 多模态生成模型的RL偏向DPO为主的另一条路子;
  • 多模态还涉及agent、具身智能,RL又有些不同;
  • 文章多到看得头大。
Read more